
Neurons can respond to stimuli and conduct impulses because a membrane potential is established across the cell membrane. In other words, there is an unequal distribution of ions (charged atoms) on the two sides of a nerve cell membrane. This can be illustrated with a voltmeter:

With one electrode placed inside a neuron and the other outside, the voltmeter is 'measuring' the difference in the distribution of ions on the inside versus the outside. And, in this example, the voltmeter reads -70 mV (mV = millivolts).
In other words, the inside of the neuron is slightly negative relative to the outside. This difference is referred to as the Resting Membrane Potential